UNITIFICATION OF WEAKLY RICKART AND WEAKLY P.Q.-BAER *-RINGS

Sanjay More, Anil Khairnar and B. N. Waphare
Received: 29 February 2024; Revised: 15 May 2024; Accepted: 27 June 2024
Communicated by Abdullah Harmancı

Abstract

S. K. Berberian raised the problem "Can every weakly Rickart *ring be embedded in a Rickart *-ring with preservation of right projections?". Berberian has given a partial solution to this problem. Khairnar and Waphare raised a similar problem for p.q.-Baer *-rings and gave a partial solution. In this paper, we give more general partial solutions to both the problems.

Mathematics Subject Classification (2020): 16W10, 16D25
Keywords: Weakly Rickart *-ring, weakly p.q.-Baer *-ring, projection, central cover

1. Introduction

Kaplansky [6] introduced Baer rings and Baer *-rings to abstract various properties of $A W^{*}$-algebras (i.e., a C^{*}-algebra which is also a Baer $*$-ring), von Neumann algebras and complete $*$-regular rings. The concept of a Baer $*$-ring is naturally motivated from the study of functional analysis. For example, every von Neumann algebra is a Baer $*$-algebra. One can refer $[4,7,9,10,13,14]$ for recent work on rings with involution.

Throughout this paper, R denotes an associative ring. An ideal of a ring R, we mean a two sided ideal. A ring R is said to be reduced if it does not have a nonzero nilpotent element. A ring R is said to be abelian if its every idempotent element is central. Let S be a nonempty subset of R. We write $r_{R}(S)=\{a \in$ $R \mid s a=0, \forall s \in S\}$, and is called the right annihilator of S in R, and $l_{R}(S)=$ $\{a \in R \mid a s=0, \forall s \in S\}$, is the left annihilator of S in R. A $*-r i n g ~ R$ is a ring equipped with an involution $x \rightarrow x^{*}$, that is, an additive anti-automorphism of the period at most two. An element e of a $*$-ring R is called a projection if it is self-adjoint (i.e., $e=e^{*}$) and idempotent (i.e., $e^{2}=e$). A $*$-ring R is said to be a Rickart $*$-ring if for each $x \in R, r_{R}(\{x\})=e R$, where e is a projection in R. For each element a in a Rickart *-ring, there is unique projection e such that $a e=a$ and $a x=0$ if and only if $e x=0$, called the right projection of a, denoted
by $R P(a)$. Similarly, the left projection $L P(a)$ is defined for each element a in a Rickart *-ring. A *-ring R is said to be a weakly Rickart $*$-ring if for any $x \in R$, there exists a projection e such that (1) $x e=x$, and (2) if $x y=0$, then $e y=0$. Recall the following propositions and an open problem from [1].

Proposition 1.1. [1, Proposition 2, page 13] If R is a Rickart *-ring, then R has a unity element and the involution of R is proper.

Proposition 1.2. [1, Proposition 2, page 28] The following conditions on a *-ring R are equivalent:
(a) R is a Rickart*-ring.
(b) R is a weakly Rickart*-ring with unity.

Proposition 1.1 says that the unity element exists in any Rickart *-ring and the Proposition 1.2 naturally creates the following problem.
Problem 1: Can every weakly Rickart *-ring be embedded in a Rickart *-ring with preservation of $R P$'s?
In [1], Berberian has given a partial solution to this problem.
According to Birkenmeier et al. [2], a $*$-ring R is said to be a quasi-Baer *ring if the right annihilator of every ideal of R is generated, as a right ideal, by a projection in R. In [3], Birkenmeier et al. introduced principally quasi-Baer (p.q.Baer) $*$-rings as a generalization of quasi-Baer *-rings. A $*$-ring R is said to be a p.q.-Baer $*$-ring if for every principal right ideal $a R$ of $R, r_{R}(a R)=e R$, where e is a projection in R. It follows that $l_{R}(R a)=R f$, for a suitable projection f. Note that an abelian Rickart $*$-ring is a p.q.-Baer $*$-ring, and a reduced p.q.-Baer $*$-ring is a Rickart $*$-ring. We say that an element x of a $*$-ring R possesses a central cover if there exists a smallest central projection $h \in R$ such that $h x=x$. If such a projection h exists, then it is unique, it is called the central cover of x, denoted by $h=C(x)$. In [8], Khairnar and Waphare proved that the central cover exists for every element in any p.q.-Baer $*$-ring.

Theorem 1.3. [8, Theorem 2.5] Let R be a p.q.-Baer $*-$ ring and $x \in R$. Then x has a central cover $e \in R$. Further, $x R y=0$ if and only if $y R x=0$ if and only if $e y=0$, that is, $r_{R}(x R)=r_{R}(e R)=l_{R}(R x)=l_{R}(R e)=(1-e) R=R(1-e)$.

In [8], Khairnar and Waphare introduced the concept of a weakly p.q.-Baer *ring. A $*$-ring R is said to be a weakly p.q.-Baer $*$-ring if every $x \in R$ has a central cover $e \in R$ such that $x R y=0$ if and only if $e y=0$. According to [3], the involution * of a *-ring R is semi-proper if for any $a \in R, a R a^{*}=0$ implies $a=0$. Recall the following results and an open problem from [8].

Proposition 1.4. [8, Proposition 2.4] If R is a p.q.-Baer *-ring, then R has the unity element and the involution of R is semi-proper.

Theorem 1.5. [8, Theorem 3.9] The following conditions on $a *$-ring R are equivalent:
(a) R is a p.q.-Baer $*$-ring.
(b) R is a weakly p.q.-Baer $*$-ring with unity.

In view of the above theorem, the following problem is raised in [8].
Problem 2: Can every weakly p.q.-Baer $*$-ring be embedded in a p.q.-Baer $*$-ring with preservation of central covers?
In [8], Khairnar and Waphare provided a partial solution to Problem 2.
In the second section of this paper, we give a more general partial solution of Problem 1 and in Section 3, we give a more general partial solution of Problem 2.

2. Unitification of weakly Rickart *-rings

Recall the definition of unitification of a $*$-ring given by Berberian [1]. Let R be a *-ring. We say that R_{1} is a unitification of R if there exists a ring K such that
(1) K is an integral domain with involution (necessarily proper), that is, K is a commutative $*$-ring with unity and without divisors of zero (the identity involution is permitted),
(2) R is a $*$-algebra over K (i.e., R is a left K-module such that identically $1 a=a, \lambda(a b)=(\lambda a) b=a(\lambda b)$, and $(\lambda a)^{*}=\lambda^{*} a^{*}$, for $\lambda \in K$ and $\left.a, b \in R\right)$,
(3) R is a torsion-free K-module (that is, $\lambda a=0$ implies $\lambda=0$ or $a=0$).

Define $R_{1}=R \oplus K$ (the additive group direct sum), thus $(a, \lambda)=(b, \mu)$ means, by the definition that $a=b$ and $\lambda=\mu$, and addition in R_{1}, is defined by the formula $(a, \lambda)+(b, \mu)=(a+b, \lambda+\mu)$. Define $(a, \lambda)(b, \mu)=(a b+\mu a+\lambda b, \lambda \mu)$, $\mu(a, \lambda)=(\mu a, \mu \lambda),(a, \lambda)^{*}=\left(a^{*}, \lambda^{*}\right)$. Evidently, R_{1} is also a $*$-algebra over K, has unity element $(0,1)$ and R is a $*$-ideal in R_{1}. The following lemmas are elementary facts about unitification R_{1} of a $*$-ring R.

Lemma 2.1. [1, Lemma 1, page 30] With notations as in the definition of unitification, if an involution on R is proper, then so is the involution of R_{1}.

Lemma 2.2. [1, Lemma 3, page 30] With notations as in the definition of unitification, let $x \in R$ and let e be a projection in R. Then $R P(x)=e$ in R if and only if $R P((x, 0))=(e, 0)$ in R_{1}.

Berberian has given a partial solution to Problem 1 as follows.

Theorem 2.3. [1, Theorem 1, page 31] Let R be a weakly Rickart *-ring. If there exists an involutory integral domain K such that R is a*-algebra over K and it is a torsion-free K-module, then R can be embedded in a Rickart *-ring with preservation of RP's.

After 1972, there was not much headway towards the solution of Problem 1. In 1996, Thakare and Waphare supplied partial solutions wherein the condition on the underlying weakly Rickart *-rings was weakened in two distinct ways. For the solution of this open problem, Berberian used the condition that R is a torsion-free left K-module, and K is an integral domain. Thakare and Waphare gave another solution in which the condition of torsion-free is replaced by other condition. They establish the following.

Theorem 2.4. [11, Theorem 2] A weakly Rickart *-ring R can be embedded into a Rickart *-ring provided there exists a ring K such that
(1) K is an integral domain with involution,
(2) R is a*-algebra over K,
(3) For any $\lambda \in K-\{0\}$, there exists a projection e_{λ} that is an upper bound for the set of left projections of the right annihilators of λ, that is, if $x \in R$ and $\lambda x=0$, then $L P(x) \leq e_{\lambda}$.

Theorem 2.5. [11, Theorem 7] A weakly Rickart *-ring R can be embedded into Rickart *-ring provided the characteristic of R is nonzero.

The $*$-ring $C_{\infty}(T) \bigoplus M_{2}\left(\mathbb{Z}_{3}\right)$ has no embedding in the sense of Theorem 2.3 as the characteristic of R is zero though it has a unitification in the sense of Theorem 2.4. This example shows that Theorem 2.4 is an improvement over Theorem 2.3 of Berberian.

For projections e and f in a $*$-ring R, we say that $e \leq f$ if $e=e f$. Note that \leq is a partial order on the set of all projections in a $*$-ring. Now we prove the existence of largest projection corresponding to the self-adjoint element by using the condition (3) of the above theorem.

Lemma 2.6. Let R be a weakly Rickart *-ring with the condition (3) in Theorem 2.4. Then for any self-adjoint element a and $\lambda \neq 0$, there exists a largest projection g such that $a g=\lambda g$.

Proof. Let $R P(a)=e^{\prime}$ and e_{λ} be the projection as given by the condition (3) of Theorem 2.4. Let $e=e^{\prime} \vee e_{\lambda}$, then $e^{\prime} \leq e$ and $e^{\prime}=e^{\prime} e=e e^{\prime}$. Since $a e^{\prime}=a$, we have $a e^{\prime} e=a e$. Hence $a=a e^{\prime}=a e$. Also, $a^{*}=a$ implies that $a=e a=e a e \in e R e$.

Thus $a-\lambda e \in e R e$. Let $h=R P(a-\lambda e)$ and $g=e-h$. This gives $(a-\lambda e) g=0$, hence $a g=\lambda g$. Let k be any projection in R such that $a k=\lambda k$. Consider $\lambda(e k-k)=e \lambda k-\lambda k=e a k-\lambda k=a k-\lambda k=0$. Let $L P(e k-k)=f$. Therefore $f \leq e_{\lambda} \leq e$. That is, $e k-k=f(e k-k)=f e(e k-k)=f(e k-e k)=0$. Consider $(a-\lambda e) k=a k-\lambda e k=a k-\lambda k=0$. Therefore $R P(a-\lambda e) k=h k=0$. Hence $k g=k(e-h)=k e-k h=k-0=k$. That is, $k \leq g$. Therefore g is the largest projection such that $a g=\lambda g$.

Recall the following lemma from [1].
Lemma 2.7. [1, Lemma 5, page 31] Let B be $a *$-ring with proper involution, $x \in B$ and e be a projection in B. Then e is the right projection of x if and only if e is the right projection of $x^{*} x$.

We give a solution of Problem 1 in which the condition " K is an integral domain" is replaced by " K is a commutative ring with unity".

Let R be a $*$-ring, K be a commutative $*$-ring with unity and R be an algebra over K. Write $\mathcal{R}=\mathcal{R}(R,+)$ for the endomorphism ring of the additive group of R. Each $a \in R$ determines an element L_{a} of \mathcal{R} via $L_{a} x=a x$ and each $\lambda \in K$ an element λI of \mathcal{R} via $(\lambda I) x=\lambda x$. Let $R_{1}=R \oplus K$ with the $*$-algebra operations as follows $(a, \lambda)+(b, \mu)=(a+b, \lambda+\mu), \mu(a, \lambda)=(\mu a, \mu \lambda),(a, \lambda)(b, \mu)=(a b+\mu a+\lambda b, \lambda \mu)$, $(a, \lambda)^{*}=\left(a^{*}, \lambda^{*}\right)$. Each $(a, \lambda) \in R_{1}$ determines an element $L_{a}+\lambda I$ of \mathcal{R} and the mapping $(a, \lambda) \rightarrow L_{a}+\lambda I$ is a ring homomorphism of R_{1} onto a subring S of R, namely the subring of \mathcal{R} generated by L_{a} and λI. Define $\mu\left(L_{a}+\lambda I\right)$ to be the ring product $(\mu I)\left(L_{a}+\lambda I\right)$, then S becomes an algebra over K and $(a, \lambda) \rightarrow L_{a}+\lambda I$ is an algebra homomorphism of R_{1} onto S. Let N be the kernel of this mapping and write $\hat{R_{1}}=R_{1} / N$ for the quotient algebra. Denote the coset $(a, \lambda)+N$ by $[a, \lambda]$. Hence $[a, \lambda]$ is an equivalence class of (a, λ) under equivalence relation $(a, \lambda) \equiv(b, \mu)$ if and only if $a x+\lambda x=b x+\mu x, \forall x \in R$.

The following result leads to the partial solution of Problem 1.

Theorem 2.8. With above notations, we have the following.
(1) The mapping $a \rightarrow \bar{a}=[a, 0]$ is an algebra homomorphism of R into \hat{R}_{1}.
(2) If $L(R)=\{x \in R \mid x y=0, \forall y \in R\}=\{0\}$ (that is, if the involution of R is proper), then the mapping $a \rightarrow \bar{a}$ is injective.
(3) If the involution of R is proper, then $[a, \lambda]=0$ if and only if $\left[a^{*}, \lambda^{*}\right]=0$ and the formula $[a, \lambda]^{*}=\left[a^{*}, \lambda^{*}\right]$ defines unambiguously proper involution in $\hat{R_{1}}$.
(4) If R is a weakly Rickart $*$-ring, $a \in R$ and e is the right projection of a in R, then \bar{e} is the right projection of \bar{a} in $\hat{R_{1}}$.

Proof. (1) and (2) are easy verification.
(3) Observe that $[a, \lambda]=0$ if and only if $(a, \lambda)+N=N$ if and only if $(a, \lambda) \in N$ if and only if $\left(L_{a}+\lambda I\right) x=0, \forall x \in R$ if and only if $a x+\lambda x=0, \forall x \in R$. Therefore in order to show $\left[a^{*}, \lambda^{*}\right]=0$ whenever $[a, \lambda]=0$, it is enough to show $a^{*} x+$ $\lambda^{*} x=0, \forall x \in R$. Consider $\left(a^{*} x+\lambda^{*} x\right)^{*}\left(a^{*} x+\lambda^{*} x\right)=\left(x^{*} a+\lambda x^{*}\right)\left(a^{*} x+\lambda^{*} x\right)=$ $x^{*} a a^{*} x+x^{*} a \lambda^{*} x+\lambda x^{*} a^{*} x+\lambda x^{*} \lambda^{*} x=x^{*}\left\{a\left(a^{*} x\right)+\lambda\left(a^{*} x\right)\right\}+x^{*}\left\{a\left(\lambda^{*} x\right)+\lambda\left(\lambda^{*} x\right)\right\}$ $=x^{*} 0+x^{*} 0=0, \forall x \in R$. Therefore $a^{*} x+\lambda^{*} x=0, \forall x \in R$. Hence $[a, \lambda]^{*}=\left[a^{*}, \lambda^{*}\right]$ defines an involution in $\hat{R_{1}}$. Also, $[a, \lambda]^{*}[a, \lambda]=0$ implies that $\left[a^{*}, \lambda^{*}\right][a, \lambda]=0$. That is, $\left[a^{*} a+\lambda a^{*}+\lambda^{*} a, \lambda^{*} \lambda\right]=0$. This gives $\left(a^{*} a+\lambda a^{*}+\lambda^{*} a\right) x+\lambda^{*} \lambda x=0, \forall x \in R$. Therefore $a^{*} a x+\lambda a^{*} x+\lambda^{*} a x+\lambda^{*} \lambda x=0, \forall x \in R$. Also, $(a x+\lambda x)^{*}(a x+\lambda x)=$ $\left(x^{*} a^{*}+\lambda^{*} x^{*}\right)(a x+\lambda x)=x^{*} a^{*} a x+x^{*} a^{*} \lambda x+\lambda^{*} x^{*} a x+\lambda^{*} x^{*} \lambda x=x^{*}\left[a^{*} a x+a^{*} \lambda x+\right.$ $\left.\lambda^{*} a x+\lambda^{*} \lambda x\right]=x^{*}\left[a^{*} a x+\lambda a^{*} x+\lambda^{*} a x+\lambda^{*} \lambda x\right]=x^{*} 0=0, \forall x \in R$. That is, $a x+\lambda x=0, \forall x \in R$. This gives $[a, \lambda]=0$. Hence the involution $*$ is proper.
(4) Let R be a weakly Rickart $*$-ring, $a \in R$ and $e=R P(a)$. Then $a e=a$ and $a y=0$ implies that $e y=0$, for $y \in R$. We prove that $\bar{e}=R P(\bar{a})$. Consider $\bar{a} \bar{e}=[a, 0][e, 0]=[a e, 0]=[a, 0]=\bar{a}$. Let $\bar{y}=[b, \mu]$ and $\bar{a} \bar{y}=0$. Then $[a, 0][b, \mu]=$ $[a b+\mu a, 0]=0$. This gives $(a b+\mu a) x=0, \forall x \in R$. That is, $a(b x+\mu x)=0, \forall x \in R$. This implies that $(e b+\mu e) x=0, \forall x \in R$. Therefore $[e b+\mu e, 0]=0$. That is, $[e, 0][b, \mu]=0$. This gives $\bar{e} \bar{y}=0$. Therefore $\bar{e}=R P(\bar{a})$.

The following theorem gives a more general partial solution to Problem 1, we give the solution in which we replace integral domain K by any commutative ring.

Theorem 2.9. Let R be a weakly Rickart *-ring and K be a commutative *-ring with unity such that R is a *-algebra over K satisfying the condition (3) of Theorem 2.4. Then R can be embedded in a Rickart *-ring with preservation of right projections.

Proof. Let $\hat{R_{1}}=R_{1} / N=\left\{[a, \lambda] \mid(a, \lambda) \in R_{1}\right\}$ and $\hat{R_{1}}$ have unity element $u=$ $[0,1]$. By Lemma 2.7, it is enough to show that every self-adjoint element of $\hat{R_{1}}$ has the right projection. Let $[a, \lambda] \in \hat{R}_{1}$ be a self-adjoint element. If $\lambda=0$, then $e=R P(a)$ and by Theorem 2.8, $\bar{e}=R P(\bar{a})$. Suppose $\lambda \neq 0$. Then by Lemma 2.6 , there exists a largest projection g such that $a g=-\lambda g$. Now we show that $R P([a, \lambda])=[-g, 1]$. Note that $[-g, 1]$ is a projection. Also, $[a, \lambda][-g, 1]=[-a g-$ $\lambda g+a, \lambda]=[a, \lambda]$. Moreover, $[a, \lambda][b, \mu]=0$ if and only if $[a b+\mu a+\lambda b, \lambda \mu]=0$ if and only if $a b x+\mu a x+\lambda b x+\lambda \mu x=0, \forall x \in R$ if and only if $a(b x+\mu x)+\lambda(b x+\mu x)=$
$0, \forall x \in R$ if and only if $\left(a+\lambda e_{x}\right)(b x+\mu x)=0$, where $e_{x}=L P(b x+\mu x)$ if and only if $\left(a+\lambda e_{x}\right) e_{x}=0, \forall x \in R$ if and only if $a e_{x}=-\lambda e_{x}, \forall x \in R$. Since g is the largest projection such that $a g=-\lambda g$. Therefore $e_{x} \leq g$. This gives $e_{x} g=g e_{x}=e_{x}$. Therefore $[a, \lambda][b, \mu]=0$ if and only if $\left(e_{x}-g\right) e_{x}=0, \forall x \in R$ if and only if $\left(e_{x}-g\right)(b x+\mu x)=0, \forall x \in R$ if and only if $-g(b x+\mu x)+e_{x}(b x+\mu x)=0, \forall x \in R$ if and only if $-g b x-\mu g x+b x+\mu x=0, \forall x \in R$ if and only if $[-g b-\mu g+b, \mu]=0$ if and only if $[-g, 1][b, \mu]=0$. Hence $\hat{R_{1}}$ is a Rickart *-ring.

3. Unitification of weakly p.q.-Baer *-rings

We recall the following examples of p.q.-Baer $*$-rings. This also shows how the class of p.q.-Baer $*$-rings is different than the class of Rickart $*$-rings.

Example 3.1. [3, Exercise 10.2.24.4] Let A be a domain, $A_{n}=A$ for all $n=$ $1,2, \ldots$, and $B=\left\{\left(a_{n}\right)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} A_{n}: a_{n}\right.$ is eventually constant $\}$, which is a subring of $\prod_{n=1}^{\infty} A_{n}$. Take $R=M_{n}(B)$, where n is an integer such that $n>1$ with transpose of matrix as an involution. Then R is a p.q.-Baer $*$-ring which is not quasi-Baer (hence not a quasi-Baer $*$-ring). Also, if A is commutative which is not Prüfer, then R is not a Rickart *-ring.

Example 3.2. [3, Exercise 10.2.24.5] Let R be a $*$-ring. If R is a right (or left) p.q.-Baer ring and $*$ is semiproper, then R is a p.q.-Baer $*$-ring. Hence, if R is biregular and $*$ is semiproper, then R is a p.q.-Baer $*$-ring.

Example 3.3. [8, Example 1.7] Let

$$
R=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2}(\mathbb{Z}) \right\rvert\, a \equiv d, b \equiv 0, \text { and } c \equiv 0(\bmod 2)\right\}
$$

Consider involution $*$ on R as the transpose of the matrix. In [5, Example 2(1)], it is shown that R is neither right p.p. nor left p.p. (hence not a Rickart $*$-ring) but $r_{R}(u R)=\{0\}=0 R$, for any nonzero element $u \in R$. Therefore R is a p.q.-Baer *-ring.

Recall the following result which gives the condition on m and n, so that the matrix ring $M_{n}\left(\mathbb{Z}_{m}\right)$ is a Baer $*$-ring and hence a Rickart $*$-ring.

Corollary 3.4. [12, Corollary 7]
(i) $M_{n}\left(\mathbb{Z}_{m}\right)$ is a Baer $*$-ring for $n \geq 2$ if and only if $n=2$ and m is a square free integer whose every prime factor is of the form $4 k+3$.
(ii) \mathbb{Z}_{m} is a Baer *-ring if and only if m is a square free integer.

The following example shows that the right projections in a *-ring need not be central covers.

Example 3.5. [8, Example 2.8] Let $A=M_{2}\left(\mathbb{Z}_{3}\right)$, which is a Baer $*$-ring (hence a p.q.-Baer $*$-ring and a Rickart $*$-ring) with transpose as an involution. There is an element $x \in A$ such that $R P(x)$ is not equal to $C(y)$, for any $y \in A$.

The following is a partial solution of the Problem 2 given in [8].
Theorem 3.6. [8, Theorem 4.6] A weakly p.q.-Baer $*$-ring R can be embedded in a p.q.-Baer *-ring provided that there exists a ring K such that
(1) K is an integral domain with involution,
(2) R is a*-algebra over K,
(3) For any $\lambda \in K-\{0\}$, there exists a projection $e_{\lambda} \in R$ that is an upper bound for the central covers of the right annihilators of λ, that is, for $t \in R$, if $\lambda t=0$, then $C(t) \leq e_{\lambda}$.

Let \tilde{R} denote the set of all projections in a $*$-ring R. In a weakly p.q.-Baer *-ring, the following is called the condition (β): For any $0 \neq \lambda \in K, \exists e_{\lambda} \in \tilde{R}$ such that $\lambda x=0$ implies that $C(x) \leq e_{\lambda}$, where K is a commutative $*$-ring with unity.

Lemma 3.7. Let R be a weakly p.q.-Baer *-ring which is a *-algebra over a commutative $*$-ring K with unity satisfying the condition (β). Then for any $a \in R$ and $0 \neq \lambda \in K$, there exists a largest central projection g such that $a g=\lambda g$.

Proof. On the similar lines as in the proof of Lemma 2.6.
The following result leads to the solution of Problem 2.
Theorem 3.8. With the notation as defined earlier, we have the following.
(1) The mapping $a \rightarrow \bar{a}=[a, 0]$ is an algebra homomorphism of R into \hat{R}_{1}.
(2) If $L(R)=\{x \in R: x y=0, \forall y \in R\}=\{0\}$, then the mapping $a \rightarrow \bar{a}$ is injective and we may regard R as embedded in $\hat{R_{1}}$.
(3) If the involution $*$ is semiproper, then $[a, \lambda]=0$ if and only if $\left[a^{*}, \lambda^{*}\right]=0$. Hence $[a, \lambda]^{*}=\left[a^{*}, \lambda^{*}\right]$ defines involution in $\hat{R_{1}}$.
(4) If R is a weakly p.q.-Baer $*-$ ring, $a \in R, C(a)=e$, then $C(\bar{a})=\bar{e}$ in $\hat{R_{1}}$.

Proof. (1) Obvious.
(2) To prove $\phi: R \rightarrow \hat{R_{1}}$ given by $\phi(a)=\bar{a}$ is injective, let $\phi(a)=\phi(b)$. Then $\bar{a}=\bar{b}$, that is, $[a, 0]=[b, 0]$. This gives $a x=b x, \forall x \in R$. Therefore $(a-b) x=0, \forall x \in R$. This gives $a-b=0$. Hence $a=b$.
(3) Suppose that R has a semiproper involution, therefore for $a \in R, a^{*} R a=0$ implies that $a=0$. Now, $[a, \lambda]=0$ if and only if $a x+\lambda x=0, \forall x \in R$. Also, for any $r \in R,\left(x^{*} a+\lambda x^{*}\right) r\left(a^{*} x+\lambda^{*} x\right)=x^{*} \operatorname{ara}^{*} x+x^{*} \operatorname{ar} \lambda^{*} x+\lambda x^{*} r a^{*} x+\lambda x^{*} r \lambda^{*} x$ $=x^{*}\left\{a\left(r a^{*} x\right)+\lambda\left(r a^{*} x\right)\right\}+x^{*}\left\{a\left(r \lambda^{*} x\right)+\lambda\left(r \lambda^{*} x\right)\right\}=x^{*} 0+x^{*} 0=0$. Therefore $[a, \lambda]=0$ if and only if $\left(x^{*} a+\lambda x^{*}\right) R\left(a^{*} x+\lambda^{*} x\right)=0$ if and only if $\left(a^{*} x+\lambda^{*} x\right)=0$ if and only if $\left[a^{*}, \lambda^{*}\right]=0$. Hence $[a, \lambda]^{*}=\left[a^{*}, \lambda^{*}\right]$ defines an involution in $\hat{R_{1}}$.
(4) Let R be a weakly p.q.-Baer $*$-ring, $a \in R$ and $C(a)=e$. Consider $\bar{a} \bar{e}=$ $[a, e][e, 0]=[a e, 0]=[a, 0]=\bar{a}$. Also, $\bar{a} \hat{R}_{1}[b, \mu]=0$ if and only if $\bar{a} \bar{e} \hat{R_{1}}[b, \mu]=0$ if and only if $\bar{a} \hat{R}_{1} \bar{e}[b, \mu]=0$ if and only if $[a, 0] \hat{R}_{1}[e b+\mu e, 0]=0$ if and only if $[a, 0][x, \lambda][e b+\mu e, 0]=0$ if and only if $[a(x+\lambda e)(e b+\mu e), 0]=0$ if and only if $a(x+\lambda e)(e b+\mu e)=0$ if and only if $a R(e b+\mu e)=0$ if and only if $e(e b+\mu e)=0$ if and only if $e b+\mu e=0$ if and only if $(e b+\mu e) x=0, \forall x \in R$ if and only if $[e b+\mu e, 0]=0$ if and only if $[e, 0][b, \mu]=0$. Therefore $C(\bar{a})=\bar{e}$.

Now we give the more general partial solution to the Problem 2, in which we replace integral domain K by any commutative ring with unity.

Theorem 3.9. Let R be a weakly p.q.-Baer $*-r i n g$ and K be a commutative $*$-ring with unity such that R is a*-algebra over K satisfying the condition (β). Then R can be embedded in a p.q.-Baer *-ring with preservation of central covers.

Proof. Let $\hat{R}_{1}=R_{1} / N=\left\{[a, \lambda] \mid(a, \lambda) \in R_{1}\right\}$. Note that $u=[0,1]$ is a unity element of $\hat{R_{1}}$. We show that \hat{R}_{1} is a p.q.-Baer $*$-ring. It is enough to show that for every element $x \in \hat{R_{1}}$, there exists a central projection $e \in \hat{R_{1}}$ such that: (1) $x e=x$, (2) $x \hat{R}_{1} y=0$ if and only if $e y=0$. Let $x=[a, \lambda] \in \hat{R}_{1}$. If $\lambda=0$, let $C(a)=e$. By Theorem 3.8, $C(\bar{a})=\bar{e}$. Suppose $\lambda \neq 0$, then by Lemma 3.7, there exists the largest central projection g such that $a g=-\lambda g$. Clearly, $[-g, 1]$ is a central projection. Also, $[a, \lambda][-g, 1]=[-a g+a-\lambda g, \lambda]=[a, \lambda]$, that is, $x e=x$ with $e=[-g, 1], x=[a, \lambda]$. Suppose $[a, \lambda] \hat{R_{1}}[b, \mu]=0$. Therefore $[a, \lambda][r, 0][b, \mu]=0$ for all $r \in R$. This gives $[a r b+\lambda r b+\mu a r+\lambda \mu r, 0]=0$ for all $r \in R$. This implies $a r b x+\lambda r b x+\mu a r x+\lambda \mu r x=0$ for all $r, x \in R$. That is, $\operatorname{ar}(b x+\mu x)+\lambda r(b x+\mu x)=0$ for all $r, x \in R$. Therefore $\left(a r+\lambda r e_{x}\right)(b x+\mu x)=0$, where $e_{x}=C(b x+\mu x)$. This gives $\left(a+\lambda e_{x}\right) r(b x+\mu x)=0$ for all $r \in R$. That is, $\left(a+\lambda e_{x}\right) R(b x+\mu x)=0$. Therefore $\left(a+\lambda e_{x}\right) e_{x}=0$. Hence $a e_{x}=-\lambda e_{x}$. Since g is a largest central projection such that $a g=(-\lambda) g$, therefore $e_{x} \leq g$. Therefore $(1-g) e_{x}=0$. This gives $(1-g) e_{x}(b x+\mu x)=0$. Thus $(1-g)(b x+\mu x)=0$ for all $x \in R$. Hence $b x+\mu x-g b x-\mu g x=0$ for all $x \in R$. Therefore $[-g b-\mu g+b, \mu]=0$, that is, $[-g, 1][b, \mu]=0$. Hence \hat{R}_{1} is a p.q.-Baer $*$-ring.

Acknowledgement. The authors are thankful to the anonymous referees for helpful comments and suggestions.

Disclosure statement. The authors report there are no competing interests to declare.

References

[1] S. K. Berberian, Baer *-Rings, Die Grundlehren der mathematischen Wissenschaften, Band 195. Springer-Verlag, New York-Berlin, 1972.
[2] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra, 159(1) (2001), 25-42.
[3] G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Birkhäuser/Springer, New York, 2013.
[4] R. Hazrat and L. Vaš, Baer and Baer *-ring characterizations of Leavitt path algebras, J. Pure Appl. Algebra, 222(1) (2018), 39-60.
[5] C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151(3) (2000), 215-226.
[6] I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New YorkAmsterdam, 1968.
[7] A. Khairnar and B. N. Waphare, Order properties of generalized projections, Linear Multilinear Algebra, 65(7) (2017), 1446-1461.
[8] A. Khairnar and B. N. Waphare, Unitification of weakly p.q.-Baer *-rings, Southeast Asian Bull. Math., 42(3) (2018), 387-400.
[9] A. Khairnar and B. N. Waphare, Conrad's partial order on p.q.-Baer *-rings, Discuss. Math. Gen. Algebra Appl., 38(2) (2018), 207-219.
[10] A. Khairnar and B. N. Waphare, A sheaf representation of principally quasiBaer *-rings, Algebr. Represent. Theory, 22(1) (2019), 79-97.
[11] N. K. Thakare and B. N. Waphare, Partial solutions to the open problem of unitification of a weakly Rickart *-ring, Indian J. Pure Appl. Math., 28(2) (1997), 189-195.
[12] N. K. Thakare and B. N. Waphare, Baer *-rings with finitely many elements, J. Combin. Math. Combin. Comput., 26 (1998), 161-164.
[13] L. Vaš, Class of Baer *-rings defined by a relaxed set of axioms, J. Algebra, 297(2) (2006), 470-473.
[14] L. Vaš, *-Clean rings; some clean and almost clean Baer *-rings and von Neumann algebras, J. Algebra, 324(12) (2010), 3388-3400.

Sanjay More
Department of Mathematics
Anantrao Pawar College
Pune-412115, India
e-mail: sanjaymore71@gmail.com
Anil Khairnar (Corresponding Author)
Department of Mathematics
Abasaheb Garware College
Pune-411004, India
e-mail: ask.agc@mespune.in; anil_maths2004@yahoo.com
B. N. Waphare
Center For Advanced Studies in Mathematics
Department of Mathematics
Savitribai Phule Pune University
Pune-412115, India
e-mail: bnwaph@math.unipune.ac.in; waphare@yahoo.com

